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Motivated by the dynamics of resonant neurons we discuss the properties of the first passage time �FPT�
densities for non-Markovian differentiable random processes. We start from an exact expression for the FPT
density in terms of an infinite series of integrals over joint densities of level crossings, and consider different
approximations based on truncation or on approximate summation of this series. Thus the first few terms of the
series give good approximations for the FPT density on short times. For rapidly decaying correlations the
decoupling approximations perform well in the whole time domain. As an example we consider resonate-and-
fire neurons representing stochastic underdamped or moderately damped harmonic oscillators driven by white
Gaussian or by Ornstein-Uhlenbeck noise. We show that approximations reproduce all qualitatively different
structures of the FPT densities: from monomodal to multimodal densities with decaying peaks. The approxi-
mations work for the systems of whatever dimension and are especially effective for the processes with narrow
spectral density, exactly when Markovian approximations fail.
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I. INTRODUCTION

The first passage time �FPT� is the time T when a stochas-
tic process x�t� leaves an a priori prescribed domain � of its
state space for the first time, assumed that x�t� has been
started at t=0 from a given initial value within �. This con-
cept was originally introduced by Schrödinger when discuss-
ing behavior of Brownian particles in external fields �1�. A
large variety of problems ranging from noise in vacuum
tubes, chemical reactions, and nucleation �2� to stochastic
resonance �3�, behavior of neurons �4�, and risk management
in finance �5� can be reduced to FPT problems. In the ma-
jority of applications the attractor of the system’s dynamics
lies inside �. The escape process is characterized by the
noise-induced flux through the absorbing boundary of �, i.e.,
by the probability density F�T� of the first passage time.

Approaches to find F�T� are typically based either on the
Fokker-Planck equation with an absorbing boundary �6� or
on the renewal theory �7�. Despite the long history, explicit
expressions for the FPT density are known only for a few
cases. These include overdamped particles under the influ-
ence of white noise in the force-free case, under time-
independent constant forces and linear forces �4,8–10�, as
well as the case of a constant force under colored noise �11�.
Reasonable approximations exist for a few nonlinear forces
�12,13�. The FPT densities of stationary Markovian pro-
cesses have a very habitual form: F�T� goes through a single
maximum and then it decays either exponentially or as a
power law. Many neuronal systems do demonstrate such
kind of behavior. It was shown already in Ref. �9� that the
interspike interval �ISI� histograms obtained experimentally
from output of some neurons can be reproduced by FPT
densities of the one-dimensional diffusion process.

This kind of description is suitable for overdamped sys-
tems, where the relaxation time to the attractor trel is much
smaller than the typical first passage time. At first the local
quasiequilibrium is established in the system. The escape
occurs then from this equilibrium state and follows with a

constant rate � inversely proportional to the mean FPT. This
situation is closely related to Kramer’s problem considering
the quasistationary flux over transparent boundary in the low
noise limit. The problem is independent of the detailed initial
state and of the time the trajectory has spent inside �. At
times T exceeding trel the FPT probability density decays
exponentially: F�T��exp�−�T�. Well-known examples are
chemical systems and nucleation processes, where the rates
determine the mean velocity of chemical reactions or of
forming overcritical nuclei �2�. Other examples are the leaky
integrate-and-fire and similar neuronal models, where after
the reset the corresponding trajectories approach quickly the
stable rest state �14�.

However, if the time scale separation between the relax-
ation and escape does not hold, the escape can occur before
the establishment of the quasiequilibrium and the rates are
time dependent. The first passage time depends sensitively
on the initial conditions and the FPT densities have a com-
plex shape different from an exponential decay. This is the
case in the presence of metastable states �15,16�. Another
example is pertinent to short time scales T� trel, which at-
tracted growing interest because of recent experiments study-
ing chemical reactions on time scales down to femtoseconds.
The flux over the boundary before the establishment of the
quasiequilibrium was found to grow in a stepwise manner,
for an underdamped potential system staying initially at the
bottom of the well �17�.

Our work is mainly motivated by dynamics of resonant
neurons �18–20�. The voltage variable of such a neuron ex-
hibits damped subthreshold oscillations around the attractive
rest state. The characteristic relaxation time to the rest state
is large compared to the mean ISI. The escape of the voltage
over the excitation threshold is the beginning of a new spike.
After spiking the voltage variable is reset to a fixed value far
from the rest state and then it can reach the threshold prior
relaxation to the rest. The interspike interval densities ob-
tained from the output of resonant neurons show a sequence
of decaying peaks separated by intervals whose length is of
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the order of the period of subthreshold oscillations. In con-
trast to Kramer’s rate theory we stress again the nonstation-
ary character of this problem due to the reset to sharp initial
conditions.

The multimodal ISI probability densities can be repro-
duced in models with different mechanisms of subthreshold
resonance: in the Hodgkin-Huxley model �21�, in the excit-
able FitzHugh-Nagumo model with the stable fix point being
a focus �22,23�, or in the region of a canard bifurcation
�24,25�. It was also shown that two-component approxima-
tions might well mimic the spiking activity of the stochastic
Hodgkin-Huxley system �26�. All these models have in com-
mon that the multimodal FPT density is obtained for stochas-
tic dynamical systems, which have at least two dynamical
variables, exhibit weakly, moderately damped or self-
amplifying oscillations, and after a spike reset to initial val-
ues which are not a fixed point. In the noise-free situation
these systems were denoted resonate-and-fire neurons �27�.

In the present work we aim to model excitable behavior
with damped subthreshold oscillations. First we present the
general exact expression for the FPT density for stochastic
processes with differentiable trajectories �10,28–30�. It re-
sults in an infinite series of integrals over joint densities of
multiple level crossings. The later sum stands for a sequen-
tial summing of trajectories excluding all except the ones
yielding the first passage. Furthermore, we discuss approxi-
mations for FPT densities, which are based either on trunca-
tion of this series, or on its approximate summation based on
decoupling. We prove the quality of different approximations
by explicit calculations for an underdamped harmonic oscil-
lator driven by white or colored Gaussian noise, representing
the stochastic resonate-and-fire neurons.

II. EXACT EXPRESSION FOR THE FIRST PASSAGE
TIME DENSITY

Consider a single random variable x�t�, whose
t-dependence is assumed to be differentiable. The first pas-
sage problem for x�t� to a boundary xb is a special case of a
level crossing problem.

The general theory of level crossings by a random process
was originally put forward by Rice �28�. He derived an ex-
pression for the probability density of recurrence of a station-
ary random process to a given level in the form of the so-
called Wiener-Rice series �29�. The exact expression for the
first passage time probability density Eq. �7� is analogous to
the Wiener-Rice series and was discussed in Ref. �30�, where
the main result, our Eq. �7�, was proved. We proceed by
giving a much more elementary derivation of Eq. �7� which
serves as the main instrument in our further investigations.

Let us first discuss the probability n1�xb , t �x0 ,v0�dt that a
continuous differentiable process x�t� crosses the level xb in a
time interval between t and t+dt with positive velocity
v�t�= ẋ�t��0 under initial conditions x�0�=x0 , ẋ�0�=v0.
Generally the whole set of variables resulting from the Mar-
kovian embedding of x�t� should be given at t=0. For sim-
plicity we consider two-dimensional dynamics, generaliza-
tion for the higher dimensional systems is obvious. Crossing

the level with positive velocity will be referred to as an up-
crossing in what follows.

If x�t� crosses the barrier within time interval �t , t+dt�
with velocity v�0, then the value of coordinate at time t
should lie in interval xb−vdt�x�t��xb. The probability that
x�t� is in this interval equals �xb−vdt

xb P�x ,v , t �x0 ,v0 ,0�dx
= �v�P�xb ,v , t �x0 ,v0 ,0�dt. Now, the velocity value at the in-
stant of crossing is positive but otherwise arbitrary. Thus we
obtain the probability density of an upcrossing by integration
over all positive v:

n1�xb,t�x0,v0,0� = �
0

�

vP�xb,v,t�x0,v0,0�dv . �1�

Equation �1� can be simply generalized to give the expres-
sion for the joint probability density of multiple upcrossings.
The probability np�xb , tp ; . . . ;xb , t1 �x0 ,v0 ,0�dtp¯dt1, that
the process x�t� crosses the level xb in each of p time inter-
vals �t1 , t1+dt1� , . . . , �tp , tp+dtp� is given by

np�xb,tp; . . . ;xb,t1�x0,v0,0�

= �
0

�

dvp ¯ �
0

�

dv1vp ¯ v1

�P�xb,vp,tp; . . . ;xb,v1,t1�x0,v0,0� . �2�

In what follows we omit xb and initial conditions in ex-
pressions for the joint densities of upcrossings. The transition
probability densities are connected with joint probability
densities according to Bayes’ theorem:

P�xp,vp,tp; . . . ;xb,v1,t1;x0,v0,0�

=
P2p+2�xp,vp,tp; . . . ;xb,v1,t�x0,v0,0�

P2�x0,v0,0�
. �3�

Our aim now is to calculate the first passage time prob-
ability density F�T� that is the fraction of all trajectories
starting from the initial point x0 with initial velocity v0 which
perform the upcrossing of the barrier at time T and this up-
crossing is the first one. All such trajectories are accounted
for in probability density n1�T� �see the first row in Fig. 1�.
However, n1�T� also accounts for trajectories for which the
upcrossing at time T was not the first one, i.e., which had
another upcrossing at some earlier time t1�T �row 2 in
Fig. 1�. Such trajectories should not contribute to F�T�,
therefore we should subtract them from n1�T�. Taking into
account that t1 can be arbitrary between 0 and T, we get

n1�T� − �
0

T

n2�T,t1�dt1. �4�

This excludes all trajectories which cross xb exactly twice
until T. However, Eq. �4� does not fully solve the problem
since the trajectories crossing xb three times, i.e., at time T
and at two earlier moments ti�T , i=1,2 �row 3 in Fig. 1�,
are not accounted for correctly. Each such trajectory is
counted once in n1�T�. The second term in Eq. �4� accounts
for the pairs of upcrossings at T and at some ti�T. Each
trajectory with two additional upcrossings at ti�T , i=1,2 is
therefore subtracted twice in �0

Tn2�T , t1�dt1. Such trajectories
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should not contribute to F�T�: in Eq. �4� we subtracted too
much and have to add the amount of trajectories with three
upcrossings at times 0� ti�T , i=1,2 and T again:

n1�T� − �
0

T

n2�T,t1�dt1 +
1

2!
�

0

T �
0

T

n3�T,t2,t1�dt1dt2. �5�

The factor 1 /2! in the last term accounts for the number of
permutations of variables ti. Generally, if a trajectory crosses
the level at time T and at N earlier times ti�T , i=1, . . . ,N,
then in 1

p! � ¯�np+1�T , tp , . . . , t1�dt1¯dtp it is accounted for
exactly CN

p times �CN
p stands for the number of combina-

tions�. Note that 	p=0
N �−1�pCN

p = �1−1�N=0. Thus in the alter-
nating sum of the kind Eqs. �4� and �5� containing N+1
terms, all trajectories crossing xb at time T and having
i=1,2 , . . . ,N additional upcrossings are excluded, however,
the ones with the larger number of upcrossings are not ac-
counted for correctly. Extending the sum to infinity we ex-
clude all superfluous trajectories, and only trajectories, for
which the upcrossing at time T was the first one, remain.
Thus the expression for the first passage time probability
density reads

F�T� = 	
p=0

�
�− 1�p

p!
�

0

T

¯ �
0

T

np+1�T,tp, . . . ,t1�dtp ¯ dt1.

�6�

Explicitly expressing the joint densities of upcrossings us-
ing Eqs. �2� and �3�, we get

F�T� =
1

P2�x0,v0,0� 	p=0

�
�− 1�p

p!
�

0

T

¯ �
0

T

dtp ¯ dt1

� �
0

�

¯ �
0

�

dvdv1 ¯ dvpvv1 ¯ vp

� P2p+4�xb,v,T;xb,vp,tp; . . . ;xb,v1,t1;x0,v0,0� .

�7�

Equation �6� connects F�T�, i.e., the solution of the FPT
problem with absorbing boundary at xb, with all joint densi-
ties of upcrossings for the unbounded process. To obtain
np�tp , . . . , t1� we consider trajectories, which are not absorbed
at xb, but can return after an upcrossing and then cross xb
again and again. The right combination of all these densities
of multiple level crossings results in the probability density
for the first upcrossing.

An alternative to direct summation of infinite series Eq.
�6� is based on an analog to a cumulant expansion. The times
when the random process x�t� performs upcrossings of xb

form a point process, or a system of random points �7,10�.
The functions

n1�t1�, n2�t2,t1�, n3�t3,t2,t1�, . . . �8�

are the distribution functions of the point process. Since x�t�
has finite velocity, the interval between two upcrossings can-
not be arbitrary small and so np�tp , . . . , t1� vanishes if two of
its arguments coincide. Such random point process is called a
system of nonapproaching points �10�. In this context F�T� is
interpreted as the waiting-time density of the point process.
The last is the probability density for the time T when the
first event occurs.

The system of random points is completely characterized
by its cumulant functions

g1�t1�, g2�t2,t1�, g3�t3,t2,t1�, . . . . �9�

Choose an arbitrary natural number r, and then fix r arbitrary
numbers z1 , . . . ,zr and r positive times t1 , . . . , tr. The cumu-
lant functions are then defined by the relation

1 + 	
p=1

�
1

p! 	
�,. . .,	=1

r

np�t�, . . . ,t	�z� ¯ z	

= exp
	
p=1

�
1

p! 	
�,. . .,	=1

r

gp�t�, . . . ,t	�z� ¯ z	� . �10�

FIG. 1. Counting crossings.
The Nth row corresponds to tra-
jectories with exactly N upcross-
ings. The pth column corresponds
to the pth term of the sum Eq. �6�.
The number on their intersection
gives how many times a trajectory
with exactly N upcrossings is ac-
counted for in the pth term. The
sum of all numbers in every row
is exactly zero.
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We obtain the explicit relations between cumulant and
distribution functions of the point process if we differentiate
both sides of Eq. �10� over all zi and then set zi=0
�i=1, . . . ,r�, i.e., if we apply the operator
�r / ���z1¯�zr��z1=¯=zr=0. Doing so sequentially for r
=1,2 ,3 , . . . we get

g1�t1� = n1�t1� ,

g2�t2,t1� = n2�t2,t1� − n1�t1�n1�t2� ,

g3�t3,t2,t1� = n3�t3,t2,t1� − 3�n1�t1�n2�t3,t2�
s

+ 2n1�t1�n1�t2�n1�t3�, . . . . �11�

Here �¯
s denotes the operation of symmetrization of the
expression in the brackets with respect to all permutations of
its arguments. The coefficients in these forms are the same as
in relations between the moments and the cumulants of a
random variable.

The relation Eq. �10� does not change its form if we
choose different times t1 , . . . , tr, different values z1 , . . . ,zr, or
change the number r. Thus extending r to infinity, allowing t
to take all possible values between 0 and T, and choosing
z1= ¯ =zr=−1 we get from Eq. �10�

1 + 	
p=1

�
�− 1�p

p!
�

0

T

¯ �
0

T

np�tp, . . . ,t1�dtp ¯ dt1

= exp
	
p=1

�
�− 1�p

p!
�

0

T

¯ �
0

T

gp�tp, . . . ,t1�dtp ¯ dt1� .

�12�

It is easy to verify that the derivative �−d /dT� of the ex-
pression on the left-hand side of Eq. �12� is exactly the ex-
pression on the right-hand side of Eq. �6�. Thus differentiat-
ing the right-hand side of Eq. �12� over T we obtain the
expression for the waiting-time density F�T� through the cu-
mulant functions of the point process:

F�T� = S��T�e−S�T� �13�

with

S�T� = − 	
p=1

�
�− 1�p

p!
�

0

T

¯ �
0

T

gp�tp, . . . ,t1�dtp ¯ dt1.

�14�

Equations �9�–�12� are general expressions which hold for
systems of random points, defined by distribution functions
Eq. �8� of any kind. So are also Eqs. �6�, �13�, and �14�,
which give the waiting-time density for arbitrary point pro-
cess. In particular, for the random points being the times,
when a differentiable random process crosses the level xb,
the distribution functions np�tp , . . . , t1� are given by the joint
densities of upcrossings Eq. �2�. Then Eqs. �6�, �13�, and �14�
together with Eq. �2� express the first passage time density
for this differentiable random process. The function S��T�
can be interpreted as the time-dependent escape rate.

These are the exact results for the FPT probability density
of any continuous differentiable random process. Though
these results were employed for mathematical proofs, to our
knowledge these infinite series of multiple integrals was
never used for explicit calculations. We proceed to show that
Eqs. �6�, �13�, and �14� can be a starting point for several
approximations. As often in the case of infinite series, the
useful approximations can be based either on the truncation
of the series after several first terms calculated exactly, or by
approximation of the higher order terms through the lower
order ones that might lead to a closed analytical form. Trun-
cation approximations for Eq. �6� are not normalized, hold
only on short time scales, and diverge at longer times �due to
the miscount of trajectories with several upcrossings�. The
approximations of the second type are based on a subsum-
mation in Eq. �14� for S�T�. They are normalized and can be
used in the whole time domain. Note, only approximations
guaranteeing positive rates S��T� are reasonable. Thus the set
of possible approximations for the series Eq. �14� is rather
restricted.

III. NOISY DRIVEN HARMONIC OSCILLATOR:
RESONATE-AND-FIRE

The model we have in mind is the resonate-and-fire model
of a neuron �27�. This is the least complicated model ac-
counting for the resonant properties of neurons in terms of an
equivalent RLC circuit �18,19�. In this way it is directly re-
lated to the leaky integrate-and-fire model also based on the
electrical analogy. Alternatively the model can be interpreted
as a systematic and linearized reduction of Hodgkin-Huxley
type dynamics �31�. For the sake of simplicity we neglect the
absolute refractory time. Under this assumption the model is
equivalent to the underdamped harmonic oscillator with the
threshold and reset, what makes the results applicable in
many other domains of science. We change by time scale and
variable transformations to dimensionless parameters and
variables. The dynamics of the voltage variable x�t� is given
by

ẋ = v; v̇ = − 
v − 	0
2x + ��t� . �15�

We fix the frequency 	0=1, choose initial conditions for x
and its velocity v to be x0=−1, v0=0, and set the threshold at
xb=1. In the present paper we consider two types of noisy
drive: �i� the white noise ��t�=�2D��t�, and �ii� the
Ornstein-Uhlenbeck noise �̇=−
−1�+�2D
−1��t�, with ��t�
being the white Gaussian noise of intensity 1. First we con-
centrate on the case �i� of white noise driving.

Because of the linearity of the system Eq. �15� all joint
probability densities are Gaussian and have the form �6�

Pn�Q� � =
1

�2��n/2�det Ĉn

exp
−
Q� Ĉn

−1Q�

2
� . �16�

Here Q� = �q1�t1� , . . . ,qn�tn�� is an n-dimensional vector,
whose ith component is the value of coordinate x�ti� or of

velocity v�ti� at the moment ti. Ĉn is a symmetric n�n cor-
relation matrix. Its elements are correlation functions be-
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tween corresponding components of vector Q� : cij =cji
= �qi�ti�qj�tj��.

Correlation functions for the system Eq. �15� are easily
obtained using Fourier transform and Wiener-Khinchin
theorem �6�. For the case of white noise driving and in
an underdamped regime �
�2	0� rxx�t�= �x�t��x�t�+ t��
= D


	0
2 e−
/2t� 


2�sin��t�+cos��t��, with �=��	0
2− 
2

4 �. In over-
damped case �
�2	0� the expression for rxx�t� is the same,
except the trigonometric functions are replaced with hyper-
bolic ones. Further, rxv�t�=rxx� �t� and rvv�t�=−rxx� �t�.

Then n1�T� is obtained from Eq. �1� in closed analytical
form:

n1�T� =
�x�v

2��22
�det Ĉ4

exp��x
2v0

2 + �v
2x0

2

2�x�v
�

�exp�−
1

2 	
i,j�2

�ijqiqj��1 − ���e�2
erfc���� .

�17�

Here �ij =� ji are elements of the inverse correlation matrix

�Ĉ4�−1, and qi are components of the vector Q�

= �x�T� ,v�T� ,x0�0� ,v0�0��. The dispersions of x and v are
�x

2=rxx�0�=D /
	0
2, �v

2 =rvv�0�=D /
. We have introduced
�= �	i�2�2iqi� /�2�22. Finally, erfc�x� is a complementary
error function.

For the joint densities of multiple upcrossings
np�tp , . . . , t1� no closed expressions can be obtained. We
evaluate the integral over v1 in Eq. �2� analytically and then
perform numerical integration of the resulting expression
over v2 , . . . ,vp to obtain np�tp , . . . , t1�. The integrals over
time in the expressions for F�T� are also evaluated numeri-
cally.

IV. TRUNCATION APPROXIMATIONS

The first passage time density F�T� for the harmonic os-
cillator driven by white Gaussian noise obtained from simu-
lations is depicted with black crosses in Fig. 2. Parameters
are chosen to be 
=0.01, D=0.02. In this case of very small
friction the correlation functions of the process oscillate with
period Tp=2� /�	0

2−
2 /4 and decay slowly within the relax-
ation time trel=2/
. A typical trajectory is smooth and shows
almost regular oscillations with fluctuating phase and ampli-
tude. The probability to reach xb is higher in the maxima of
the subthreshold oscillations. The initial phase of these oscil-
lations is fixed by sharp initial conditions. Thus on shorter
time scales F�T� shows the multiple peaks following with
the frequency of damped oscillations �=�	0

2−
2 /4. On
long times T� trel the quasiequilibrium establishes and FPT
density decays exponentially. The number of visible peaks
depends on the relation between trel and the period of oscil-
lations Tp and is given by the number of periods elapsing
before the quasiequilibrium is achieved. For parameter val-
ues as in Fig. 2 trel=200, which corresponds to about 30
periods Tp=6.28.

Let us consider truncation approximations for the series
Eq. �6�. The first approximation is given by the first term

n1�T�, the second approximation by two terms, Eq. �4�, and
the third by three terms, Eq. �5�. The higher order approxi-
mations entail the numerical estimation of high-dimensional
integrals, which at some stage leads to a computational effort
larger than the one necessary for a direct simulation. There-
fore we restrict ourselves to the one-, two-, and three-term
approximations.

The result of the one term approximation is shown in Fig.
2�a� with a gray line. The first peak of the FPT density is
reproduced almost exactly. All further peaks are overesti-
mated because all trajectories performing multiple upcross-
ings of xb are included. On long times the process becomes
stationary and the first approximation tends to a constant
value limT→�n1�T�=n0. This is the mean frequency of up-

FIG. 2. FPT density for harmonic oscillator driven by white
Gaussian noise, 	0=1, 
=0.01, D=0.02, x0=−1, v0=0, and xb=1.
Simulation results are shown with black crosses and truncation ap-
proximations with a gray line: �a� one term Eq. �1�, �b� two terms
Eq. �4�, and �c� three terms Eq. �5�. The mean FPT obtained from
simulations equals 14.6, the median of distribution lies by 3.2. Note
the logarithmic scale.
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crossings for a stationary process, also known as the Rice
frequency �28�. The general expression for n0 reads

n0 =
1

2�

−

rxx� �0�
rxx�0�

�1/2

e−xb
2/2rxx�0�. �18�

In our case of a harmonic oscillator driven by white noise
n0= �	0 /2��exp�−
xb

2	0
2 /2D�. In the stationary regime the

mean interval between two consecutive upcrossing TR is
given by the inverse of the Rice frequency TR=1/n0. For the
chosen parameter values TR=8.06.

The second approximation �gray line in Fig. 2�b�� repro-
duces almost exactly the first two peaks of FPT density. Then
it becomes negative because in Eq. �4� trajectories perform-
ing two and more superfluous upcrossings are subtracted too
many times. Moreover, the second approximation tends to
minus infinity for T→�. The third approximation repro-
duces well the three first peaks of F�T�, and then diverges
tending to plus infinity.

Note that the mean first passage time obtained numeri-
cally equals 14.6 for these parameter values, and the median
of the distribution lies by 3.2. Thus the first three approxi-
mations reproduce the most part of the FPT probability den-
sity.

The behavior of F�T� for the harmonic oscillator with
higher damping 
=0.8, stronger noise intensity D=0.44, and
other parameters as in Fig. 2 is presented in Fig. 3. For these
parameter values the relaxation time trel=2.5 is less than the
period Tp=6.86. Therefore the FPT density is practically
monomodal with a single maximum and a small shoulder
separating it from the exponential tail. The numerically ob-
tained F�T� is shown with gray crosses, the one term trun-
cation with a dotted line, the two terms truncation with a
dashed line, and the three terms truncation with a solid line.
The truncation approximations reproduce again the most part
of the distribution: the mean FPT equals 13.1 and the median
lies by 9.1.

Thus the truncation approximations reproduce the FPT
density on short times but are not normalized and diverge on
large times. However, one can force the normalization in
truncations as follows:

�Ftrunc�T���
1 − �
0

T

�Ftrunc�t��dt� . �19�

Here Ftrunc�T� is a truncated series for the FPT density, it is
given by Eqs. �1�, �4�, and �5� for one, two, and three terms
truncations, respectively. ��t� is the Heaviside step function:
the expression Eq. �19� turns to zero as soon as the integral
over the absolute value of Ftrunc�T� exceeds 1.

In Fig. 4 we show the FPT density for the same parameter
values as in Fig. 2. Simulation results are shown with
crosses, and approximations obtained from Eq. �19� with
one, two, and three terms by solid lines. The probability
distributed over the long exponential tail in the real FPT
density is concentrated in the positive artifact posed on in-
termediate times in the normalized truncations. Hence the
mean FPT computed from such approximations is always
strongly underestimated.

The more terms are included, the more precise truncations
become. However, one has to confine oneself to a few terms,
since the calculation of higher order terms implies the com-
putation of multiple integrals and is not more effective than
simulations. Therefore the truncation approximations are
good, when the most part of the FPT probability is concen-
trated in the first few peaks, i.e., when the barrier value is
low or the noise is strong.

V. DECOUPLING APPROXIMATIONS

Decoupling approximations for Eq. �6� or Eq. �14� are
based on approximate expressions of the higher order terms
through the lower order ones, which may lead to a closed
analytical form �32�. Thereby infinitely many approximate
terms are included.

The simplest way to obtain such an approximation is to
neglect all correlations between upcrossings. This means to

FIG. 3. FPT density for harmonic oscillator driven by white
Gaussian noise, 	0=1, 
=0.8, D=0.44, x0=−1, v0=0, and xb=1.
Simulation results shown with gray crosses; one term approxima-
tion Eq. �1� with a dotted line, two terms approximation Eq. �4�
with a dashed line, and three terms approximation Eq. �5� with a
solid line. The mean FPT obtained from simulations equals 13.1,
the median of distribution lies by 9.1. Note the logarithmic scale.

FIG. 4. The same as in Fig. 2, however, the truncations are
correctly normalized by Eq. �19�. Simulation results shown with
gray crosses; the truncations with solid lines. The curves for nor-
malized one, two, and three terms truncations are vertically shifted
by 0.6 for the sake of clarity.
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neglect all terms in Eq. �14� except for the first one, and
leads to

S�T� = �
0

T

n1�t�dt . �20�

Equivalently, neglecting all correlations corresponds to
the factorization of np+1�T , tp , . . . , t1� into a product of one-
point densities n1�T�n1�tp�¯n1�t1� in Eq. �6�. Then the se-
ries, Eq. �6�, sums up into F�T��n1�T�exp�−�0

Tn1�t�dt�,
which is equivalent to Eqs. �13� and �20�. This approxima-
tion will be referred to as the Hertz approximation since the
form of F�T� resembles the Hertz distribution �33�. It is an
approximation of first order, since it takes the first term of
the series exactly, and all other terms are approximated
through this first one.

The second order approximation should therefore account
for the first and the second terms exactly and approximate all
higher terms through these two. The general form of F�T� in
terms of the cumulant functions Eq. �13� ensures the right
normalization, irrespective of the way S�T� is approximated.
However, the simple truncation of the series Eq. �14� after
the second term does not ensure the positive escape rate
S��T�.

The second order approximation guaranteeing S��T��0
was proposed by Stratonovich in the context of peak duration
�10�. The first and the second cumulant functions are taken
exactly, and the higher ones are approximated by the combi-
nations of these two:

gp�tp, . . . ,t1� � �− 1�p−1�p − 1�!n1�tp� ¯ n1�t1�

� �R�t1,t2�R�t1,t3� ¯ R�t1,tp�
s. �21�

Here �¯
s is again the operation of symmetrization. R�ti , tj�
is the correlation coefficient of upcrossings

R�ti,tj� = 1 −
n2�ti,tj�

n1�ti�n1�tj�
. �22�

Note that R�t1 , t1�=1 and R�ti , tj�→0 for large values of
�ti− tj�.

The approximation of the cumulant functions in the form
Eq. �21� can be motivated by the following argument. Con-
sider Eq. �10� with r=1. Recall that the joint densities of
upcrossings vanish for coinciding arguments: np�t1 , . . . , t1�
=0. Thus it follows from Eq. �10�:

ln�1 + n1�t1�z1� = 	
p=1

�
1

p!
gp�t1, . . . ,t1�z1

p.

The above expression should hold for arbitrary z1. There-
fore expanding the logarithm in series and equating the co-
efficients by the same powers of z1 on both sides, one obtains
the identity

gp�t1, . . . ,t1� = �− 1�p−1�p − 1�!n1
p�t1� . �23�

Equation �23� is exact for all coinciding arguments. Equation
�21� gives a correction to it, when the arguments differ.

Substitution of Eq. �21� into Eq. �14� delivers then the

Stratonovich approximation for F�T� in the form Eq. �13�,
now with S�T� being

S�T� = − �
0

T

n1�t�

ln�1 − �
0

T

R�t,t��n1�t��dt��
�

0

T

R�t,t��n1�t��dt�

dt . �24�

Let us now discuss the domains of applicability for these
approximations. The Hertz approximation Eq. �20� holds if
all correlations decay considerably within the typical time
interval between upcrossings TR. The decay of correlations is
described by the relaxation time trel=2/
 of the process.
Therefore the Hertz approximation holds for trel�TR.

The Stratonovich approximation is applicable when the
argument of the logarithm in Eq. �24� is positive,
1−�0

T�n1�t��−n1�t�−1n2�t� , t��dt��0. Using the fact that
n2�t� , t� /n1�t� tends to n1�t�� for �t− t��� trel and tends to zero
for �t− t��→0 we get as a rough estimate for the validity
region of Eq. �24� trel�TR.

Let us now turn to the results for the harmonic oscillator
Eq. �15� with white noise driving. In Figs. 5 and 6 the FPT
probability density obtained from simulations is depicted
with a gray line, the Hertz approximation Eq. �20� with a
black dashed line, and the Stratonovich approximation Eq.
�24� with a black solid line.

In Fig. 5�a� the parameters are chosen to be 
=0.8,
D=0.1, corresponding to moderate friction and moderate
noise intensity. For given parameter values trel=2.5 and TR
=343, so that trel�TR, both Hertz and Stratonovich approxi-
mations hold and reproduce well the FPT density in the
whole time domain.

In the case of moderate friction and stronger noise the
upcrossings become more frequent and TR decreases. The
FPT changes its form to practically monomodal. An example
is given in Fig. 5�b� with 
=0.8, D=0.44 which correspond
to trel=2.5 and TR=15.6. The Stratonovich approximation
complies very well with simulations, while the Hertz ap-
proximation fails to reproduce the details of the distribution:
It underestimates F�T� on short times, and shows slower
exponential decay in the tail than the one observed in simu-
lations �see the inset�.

Finally, for small friction and weak noise the upcrossings
are rare, but the relaxation time is large. The FPT probability
density exhibits multiple decaying peaks. In Fig. 5�c�

=0.08, D=0.01 corresponding to trel=25, TR=343. Again,
the Stratonovich approximation performs well, while the
Hertz approximation underestimates the first peak, overesti-
mates all further peaks, and decays in the tail faster than the
simulated FPT density.

For the large T, F�T� decays exponentially, F�T�
�exp�−�T�. The decrement of this decay is obtained from
the long time asymptotic: �T=limT→�S�T�. Thus in the Hertz
approximation Eq. �20� one gets �H=limT→��1/T��0

Tn1�t�dt
=n0T /T=n0. The behavior in the Stratonovich approximation
Eq. �24� is determined by limt,t�→��0

TR�t , t��n1�t��dt�
�n0
cor with 
cor given by 
cor=limt→��0

�R�t , t��dt�. Note
that 
cor is not necessarily positive because of the oscillating
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correlation coefficient. Inserting this expression into Eq. �24�
and expanding the logarithm up to the second term we get
�S=n0�1+ 1

2n0
cor� providing the second order correction to
�H. The value of 
cor for the parameter set as in Fig. 5�a� is

cor=−2.4, for parameters as in Fig. 5�b� 
cor=5.09, and for
parameters as in Fig. 5�c� 
cor=−431.99. The long time
asymptotic obtained with these 
cor values reproduce fairly
well the decay patterns found numerically.

In the overdamped regime �
�2	0� the condition
trel�TR is always fulfilled. Nevertheless the validity region
of our approximations is limited. With increasing friction the
process x�t� approaches the Markovian one �it is Markovian
in the overdamped limit 	0 /
�1�. For such processes the
pattern of upcrossings is not homogeneous, but shows rather
well separated clusters of upcrossings �10�. Essentially in the
Markovian limit the property that upcrossings form a system
of nonapproaching random points is violated. The upcross-
ings within a single cluster are not independent even if their
mean density n0 is low, so that the quality of approximations
decreases. This fact is illustrated in Fig. 6. In the over-
damped regime the correlation functions decay monoto-
nously, and the FPT densities are always monomodal. The
parameters in Fig. 6�a� are 
=3.0, D=0.5, so that

FIG. 5. FPT probability density for harmonic oscillator driven
by Gaussian white noise. Simulation results are shown with a gray
line, Hertz approximation with a black dashed line, and Stratonov-
ich approximation with a black solid line. Note the logarithmic
scale in T. The insets show the same curves on the logarithmic scale
in F�T�. The parameters are 	0=1, x0=−1, v0=0, xb=1, �a�

=0.8, D=0.1, trel=2.5, TR=343, �b� 
=0.8, D=0.44, trel=2.5,
TR=15.6, and �c� 
=0.08, D=0.01, trel=25, TR=343.

FIG. 6. Same as in Fig. 5, however, for the case of stronger
friction. The parameters are �a� 
=3.0, D=0.5, 	0 /
=0.33, and �b�

=10.0, D=5.5, 	0 /
=0.1 and other parameters as in Fig. 5.
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	0 /
=0.33. Equations �13� and �24� continue to give a good
approximation for F�T�, while the Hertz approximation be-
comes inaccurate. Further increase in friction, for example,

=10.0, D=5.5 as in Fig. 6�b� corresponding to 	0 /
=0.1,
makes the process approach the Markovian limit. The Stra-
tonovich approximation starts to be inaccurate, and the Hertz
approximation fails.

VI. TRUNCATION VERSUS DECOUPLING
APPROXIMATIONS

In the two previous sections we have seen that truncation
approximations reproduce the FPT density on short time
scales. In contrast, the decoupling approximations reproduce
FPT densities in the whole time domain and possess the right
normalization. At first glance, it may seem that the decou-
pling approximations excel the direct truncations and should
be preferably used in applications. However, it depends on
the problem one has to solve, and sometimes the truncations
turn out to be useful.

One such situation was already mentioned. If the noise
intensity is high or the barrier value is low, then the upcross-
ings occur frequently, and the decoupling approximations
cannot be applied. For example, for parameter values as in
Fig. 2, the relaxation time is trel=200, and the mean interval
between upcrossings TR=8.07. Thus trel�TR, and both Hertz
and Stratonovich approximations fail. Nevertheless, the most
part of the FPT density is concentrated in the first few peaks
in this case, and is well reproduced by the truncation ap-
proximations, as shown in Figs. 2 and 4.

One can also be interested in a very accurate approxima-
tion for the FPT density on short times. The truncations de-
liver better results on short times than the decoupling ap-
proximations. For example, in Fig. 7 the simulation results
are compared with the three terms truncation and the Stra-
tonovich approximation for the same parameter values as in

Fig. 5�c�. Both approximations reproduce very accurate the
first peak in the FPT density. However, the three terms trun-
cation is much more accurate in estimation of the second and
third peaks �see the inset in Fig. 7�.

This can be easily understood. The Stratonovich approxi-
mation takes n1�t1� and n2�t2 , t1� exactly, and approximates
all higher order densities through these two. On times,
when the first peak occurs, n2�t2 , t1� is negligibly small.
Then from Eqs. �21� and �22� we obtain gp�tp , . . . , t1�
��−1�p−1�p−1�!n1�tp�¯n1�t1�. Substitution of this expres-
sion into Eq. �10� then gives np�tp , . . . , t1��0 for p�1. Thus
on these times the Stratonovich approximation just coincides
with the one term truncation, and so reproduces the first peak
very accurately. On times, when the second peak in the FPT
density occurs, n2�t2 , t1� is significantly different from zero.
Hence all approximated np�tp , . . . , t1�, p�2 turn out to be
nonvanishing as well, while the real values for these func-
tions are negligibly small on these times. Thus the accuracy
of the Stratonovich approximation decreases in the second
peak. From analogous reasoning it becomes clear that the
Hertz approximation is already inaccurate in estimation of
the first peak.

VII. HARMONIC OSCILLATOR DRIVEN BY COLORED
NOISE

Expressions Eq. �6� and Eqs. �13� and �24� can be used to
obtain the FPT density for a random process x�t� if the joint
probability densities of x and its velocity v, Eq. �2�, exist.
Thus it is necessary that the process x�t� is continuous and
differentiable at any time, but there are no further restrictions
on dimension and form of the system. The truncation and
decoupling approximations deliver good results for the FPT
density in their validity regions independently of the charac-
ter of the noisy drive. In particular the case of correlated
input signals �colored noise driving� is of importance in neu-
roscience. For example, synaptic filtering of the input spike
train may lead to an exponentially correlated input signal.

Therefore we consider as another example a resonate-and-
fire neuron Eq. �15� driven by the Ornstein-Uhlenbeck noise.
The correlation time of the process is 
, the variance D /
,
and the correlation function ���t���t+ t���= �D /
�exp�−t� /
�.
In the limit 
→0 the process tends to the white noise of
intensity 2D. The correlation functions rxx�t�, rxy�t�, ryx�t�,
rxv�t�=rxx� �t�, rvv�t�=−rxx� �t�, ryv�t�=ryx� �t�, rvy�t�=−rxy� �t� can
be obtained using Fourier transform as it was done for the
white noise case in Sec. III.

Then n1�T� is again obtained analytically and has the form
given by Eq. �17�. Now �ij =� ji are elements of the inverse

correlation matrix �Ĉ5�−1, qi are components of vector

Q� = �x�T� ,v�T� ,x0�0� ,v0�0� ,�0�0��. The factor � is defined in
the same way as it was done in Sec. III.

For simplicity, we assumed sharp initial conditions for the
noise variable, i.e., � is reset after every spike to a fixed
value �0. The alternative assumption, that the neuron vari-
ables x, v are reset to their initial values once x�t� reaches the
threshold without resetting ��t�, might be more realistic �11�.
In this case all probability densities should be averaged

FIG. 7. FPT density for harmonic oscillator driven by white
Gaussian noise, 	0=1, 
=0.08, D=0.01, x0=−1, v0=0, and xb=1.
Simulation results are shown with crosses, the three terms approxi-
mation with a black line, and the Stratonovich approximation with a
gray line. The inset shows the magnification of a part of the curve.
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with respect to the stationary density of noise values upon
firing. However, as an example, we confine ourselves to
consideration of sharp initial conditions for the noise:
P�� , t=0�=���−�0�.

In Fig. 8 we show simulated FPT probability density and
the Hertz approximation for the harmonic oscillator driven
by the Ornstein-Uhlenbeck noise. We choose two different
values of the correlation time: 
=0.5 and 1.0. The reset value
for the noise is �0=0, and other parameters are as in Fig.
5�a�. The noise intensity decreases with increasing 
, hence
the mean FPT growth. For larger values of 
 the height of the
main peak decreases and the weight of the exponential tail
growth, nevertheless F�T� preserves the bimodal structure.
For given values of the correlation time TR=829.2 and
TR=4247.1, respectively, that significantly exceeds trel. Thus
in both cases the Hertz approximation is absolutely suffi-
cient.

VIII. SUMMARY

Motivated by studies on the dynamics of resonant neu-
rons, we consider the first passage time problem for systems
with subthreshold oscillations and non-negligible relaxation

times after a reset. The joint densities of multiple upcrossings
for such a process x�t� can be obtained in the case of differ-
entiable trajectories. The FPT density for x�t� is expressed in
terms of an infinite series of multiple integrals over all joint
densities of upcrossings, or equivalently, in terms of the cu-
mulant functions.

We consider two types of approximations for this infinite
series. The truncation approximations include the first few
terms of the series calculated exactly. They reproduce well
the FPT density on short and intermediate times and can be
used when the most part of the FPT probability is concen-
trated in the first few peaks, i.e., when the barrier value is
low or the noise is strong.

The decoupling approximations can be derived for the
case of weakly correlated upcrossings. The higher order cu-
mulant functions are expressed through the lower order ones,
and then infinitely many terms sum up to the closed expres-
sion for F�T�. The Hertz approximation �the one neglecting
all correlations between upcrossings� is absolutely sufficient
for the case of moderate friction and moderate noise inten-
sity. The Stratonovich approximation �approximating the
higher order cumulant functions through the first and the
second ones� performs even better and does not lose accu-
racy for high noise intensities or in the slightly overdamped
regime.

We illustrate our results by the noise driven harmonic
oscillator, with the threshold value at xb and reset to sharp
initial conditions, i.e., the resonate-and-fire model of a neu-
ron. The validity regions of the approximations cover all
different types of subthreshold dynamics. Thus the approxi-
mations reproduce all qualitatively different structures of the
FPT densities: from monomodal through bimodal to multi-
modal densities with several decaying peaks. The approxi-
mations hold for systems of whatever dimension. We illus-
trate this by the harmonic oscillator driven by the Ornstein-
Uhlenbeck noise.

Though we applied the theory to the harmonic oscillator
�resonate-and-fire model�, the linearity of the system is in
general not required. The joint distributions of x�t� and its
velocity should exist, i.e., x�t� should be differentiable in
time. No further restrictions on the form and dimension of
the system are implied.
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